
Welcome to the Study on Evaluating Explicit
Programming Strategies

In the following slides, you’ll learn some key concepts that will help you in
completing the study, work on a few hands-on exercises to try out your
understanding of the concepts, and then begin the two study tasks. As you go
through the slides, you should make sure you understand the concepts and ask
the experimenter if you are confused.

Background survey

Please complete the following survey:

https://goo.gl/forms/1hfffUdTAf0xDo5f1

https://goo.gl/forms/1hfffUdTAf0xDo5f1

WebStorm

WebStorm is an IDE for
editing, testing, and
debugging code.

To run a project, you
should (1) navigate to
the HTML file in the
current directory and (2)
click the Chrome
browser button in the
right hand edge of the
code window.

Find in file
Press COMMAND F
to search within a file.

Each match is
highlighted with a
yellow background.

Press ENTER to
move between
matches.

Open the Console in Chrome

To see output to the Console
in Chrome, go to View /
Developer / JavaScript
Console.

Hello world

Write a program that prints ‘Hello world’ to the console. Verify that the program
works correctly by opening the console.

Unit testing with Jasmine
In this study, you will use the Jasmine unit testing framework to write unit tests.

Here’s a simple example of a Jasmine unit test:

describe("A suite is just a function", function() {
 var a;

 it("and so is a spec", function() {
 a = true;

 expect(a).toEqual(true);
 });
});

Declare a set of Jasmine tests

Declare a specific test

Test that the variable a is equal to true.

Jasmine Exercise
Write a test for the following add function

function add(a, b)
 {

 return a + b;

 }

Task 1: Debugging task (30 minutes)

In this task, you’ll fix a bug in a simple web-based game.

The way the game is supposed to work is that the snake moves up, down, left, and right
(using the keyboard). Every time the snake eats a dot, it grows in length by one. If the snake
collides with itself, the game is over.

As you'll see when you play the game, the snake does not move up, down, left, and right. It
just seems to move diagonally, and when you press the arrow keys in certain directions, the
game ends.

You have up to 30 minutes. When you believe you’ve found a fix, tell the experimenter which
text on which line of code you changed (e.g., line 27, replace "hello" with "goodbye").

Task 1: Debriefing Questions

Task 2: Design Task (30 minutes)

In this task, you’ll design and implement a simple autocomplete feature.

Whenever the user begins typing a new word, your autocomplete will recommend possible
completions. Your autocomplete will generate completions based on the words that the user
has already entered in the text area, ranking valid possible completions from most to least
likely based on the frequency of the word in existing text. If there are no possible
completions based on these words, your system should generate an empty list of
completions.

Your goal is to build a working implementation and to craft a clear and easy to maintain
design. You have up to 30 minutes. Notify the experimenter when you're done.

Task 2: Debriefing Questions

Study Debriefing

