
Programming Strategies Replication Guide

1 Before the Study Evaluation Test

Users who are interested to participate in our study should have a minimum
knowledge of programming debugging and design. In order to filter out the
very inexperienced users, participants should have pass a pre evaluation test in
which they answer a couple of questions. For each participant, creat a copy of
the pre-test PowerPoint. tell them that they have 5 minutes answering both
questions, but wait for them at most 8 minutes to answer 2 questions. The
timer started when they started reading the first question. If a participant is
still working on the 2 questions after 8 minutes, stop them.

1.1 Pretest content

The content of the shared PowerPoint is shown in figure 1 and 2. The pdf ver-
sion of the document is also available as ”Programming Strategies Pre evaluation
tests” at http://programmingstrategies.org/ExplicitStrategiesStudyMaterials/Material.html

Figure 1: Pretest evaluation question 1

1



Figure 2: Pretest evaluation question 2

1.2 Pretest correct answers and grading policy

The correct answer of the pretest questions are:

• Task1

– Banner

– Good night

– Good night Bob!

• Task2

– Set width of logo to 100%

– Hide the logo

– Set all anchor elements font size to xxlarge

– Disable all input elements

In the first task for each line of correct answer, participants received 1 point.
The maximum grade of 3 could be gained in the first task. In the second task,
if participant did not answer the the first question’s correctly but answered the
second question correctly, give them two points for the second answer. In both
tasks, for each extra line in the output that is not correct, reduce the score by
1.

Participants passed the pretest if they have an overall score of 4 or greater on
the sum of both tasks’ scores. The maximum possible score is 7. If a participant
pass the pretest, generate an id and record it in the participants’ list (e.g., p17).
Store a record of the pretest time and scores in data spreadsheet as well. Then
schedule a study session for the participant. Participants who wanted to run the
study online should install WebStorm on their local machine before the study
session.

2



2 Study Session

2.1 Before the Study Session

To prepare for the study, ensure that WebStorm is installed either on your
local machine for the in-person user studies or on the user local machine for
online user study participants. A clone of the GitHub repository containing the
experimental tasks should be created with the same name as the participant
Id. The code is available online at ExplicitStrategiesStudyMaterials web page.
Copy all the directories of Debugging Task, Design Task, Hello World, Jasmine
Task, and Lib is copied to the new directory for the participant. Then, commit
the newly created directories to Git. This will enable using a diff to identify the
changes that participant makes, if any, during the study session. Next step is
assigning the participant to either the control or experimental condition. Record
this under the Condition column in the data spreadsheet. Generate a second
participant identifier based on the condition (e.g., C3) and record this in the
Data spreadsheet.

Create a new Note document with the name corresponding to the participant
identifier. To take notes during the study, you will need another laptop or other
device.

2.1.1 StrategyTracker Live Demo

In the experimental studies, after the participant finished reading our tool tu-
torials in the slides, you need to show a 5-minutes demo of how to use Strat-
egyTracker and GitMerge strategy to fix a merge conflict in GitHub. For this
purpose, you should have set up a small project with 2 branches (Master and
second) with a conflict in one line. Since the demo should not take more than 5
minutes, it’s better to have the changes committed in both branches before the
study session. You can see the GitMerge strategy in the Strategies document
online.

2.1.2 In-person vs Remote participants

In-person participants will do the study on the your laptop. Remote participants
will participate by setting up a Google Hangouts or Skype connection. They
should share their screen or (for the StrategyTracker Live demo), you will share
their screen. For a remote participant, before the study session, you should clone
the GitHub repository containing the experimental tasks by creating a directory
in the repository with same name as the participant Id. At the beginning of
the study session, you should ask participant to ensure WebStorm is installed.
Participants can install a trial version of Web storm using the installer located
at: https://www.jetbrains.com/webstorm/download. You should also ask the
participant to clone the GitHub repository containing the experimental tasks.

3



2.2 During the Study Session

Give participants the informed consent form. Answer any questions they may
have. Start the study session by starting Web Storm with the participant project
directory. You should make sure participant does not access any of the fold-
ers other than contained in their participant directory. Based on the study
condition, controlled or experimental, you should open either ‘Programming
Strategies Control Condition Study Material’ or ‘Programming Strategies Ex-
perimental Condition Study Material’ slides(copy of pdf docs available online.)
As participants begin the task, prompt participants to think aloud. Start an au-
dio recorder for the whole study session. Have Notes document open throughout
and record observations on the participant, specifically noting critical incidents
where participants diverge from correct path.

2.2.1 Background Survey

In the second slide as the participant open the survey(Programming Strate-
gies Survey google form available in the web page), give them their participant
assigned Id. Ask participants to fill out the survey about their experience in
designing and debugging skill. The survey answers are used to further make a
record of the participants’ expertise in each task. The total score they gained in
each skill is calculated and normalized. Then for each skill, specify a threshold
for ranking the participants as familiar or unfamiliar, which familiar stands for
having good experience in task, and unfamiliar stands for having basic knowl-
edge in related programming task.

2.2.2 Web Storm Tutorial

Users would go through a couple of slides about the Web Storm IDE. If partici-
pants got stuck, you provide whatever help is necessary for them to understand
how to work with Web Storm. Ask online participants to open the shared
repository in their local IDE.

2.2.3 Hello world Tutorial

Ask participants to write a hello word program in Web Storm and run it. They
are provided with the basic class implementation code in their study repository.
Make sure they write the code in main.js and check the output in console rather
than HTML. Answer any questions they have. They should finish this part
correctly to be able to go to the next slide.

2.2.4 Jasmine tutorial

Ask participants read a couple of slides about unit testing with Jasmine. This
part is required as the design task is about using the Jasmine unit testing
framework to write unit tests. After the Tutorial, ask to write some test cases
for a piece of code. Answer any questions participants might have about how

4



to use unit test framework in this part. Participant should not advance until
successful task completion. They are allowed to use google.

2.2.5 Strategy Tracker tutorial [Experimental condition]

This section is just for the Experimental conditions, which are supposed to use
a strategy in the StrategyTracker tool. They go through a couple of slides about
the features of the tool and how they can use it. After they finish reading all the
slides about strategy tracker(slides 9-20 in Programming Strategies Experimen-
tal Condition Study Material in the web page), give them the live demo on slide
21, on how to use GitMerge strategy to merge two branches in GitHub and fix
the conflict. For the online participants, share your screen with the participants
for the demo.

To warm up, participants should test a strategy in StrategyTracker to solve
the problem of tower of Hanoi. The tower of Hanoi is a simple puzzle game. The
objective is to move all of the discs while following some rules. We provided two
links to the user, one for the related strategy to solve tower of Hanoi problem
in StrategyTracker, and the other for an online puzzle game of tower of Hanoi
at https://www.mathsisfun.com/games/towerofhanoi.html.

When participants start, note the time. If participants do not place Strat-
egyTracker and tower of Hanoi side by side immediately as they are open-
ing them, ask them to do so. If participant actions ever diverge from Strat-
egyTracker instructions, give participants feedback immediately. If partici-
pants assess a condition in StrategyTracker incorrectly, give feedback imme-
diately. The strategy used for this part is available as Programming Strategies at
http://programmingstrategies.org/ExplicitStrategiesStudyMaterials/index.html.

3 Tasks

3.1 Design Task

Users are allowed to google. Do not answer questions about the task. Answer
any question about the tool itself. If participant tries to run the code in TDD
task by running the JS file rather than the HTML file, prompt the participant,
“You can run the program by going to the HTML file and clicking the Chrome
button in the top right.” Do not describe what the task is asking them to do.
Do not answer any question about how they should start or approach the task.
After they finished run the test cases on their code repository. Count the num-
ber of test cases passed and record them in the data sheet. The second measure
of progress on the design task is the maturity of the solution’s verification in-
frastructure, which both guided and self-guided participants wrote. We counted
each test that did not have syntax errors and that had a purpose related to a
requirement, independent of a corresponding implementation. This resulted in
an ordinal scale ranging from 0 to an observed maximum of 5 tests. Record
these scores in the data sheet.

5



3.2 Debugging Task

In slide 26, before the user starts the task, give a demo of the correct behaviour
of the game. Users are allowed to google. Do not answer questions about the
task. Answer any question about the tool itself. If user asks about clarification
in the statement, just guide them to read the description. Have a record of
the statement of confusion in the Note records. Have all the think aloud words
transcribed. Record every action participant is taking. If user forget to think
aloud, remind them just one time to think aloud. Check which parts of the code
the user is meeting. Check if they got close to find the fault or not. score their
closeness to solve the problem with a range of 0-2, which 0 is for users who did
not get close to the faulty line, 1 for those who found the faulty line but could
not fix the issue, and 2 for the ones who fix the fault. Record the score in the
data sheet.

4 Interview questions

When the participant navigates to each of the post-task interview slides, ask
each of the questions in turn. If the participant does not directly answer the
question or answers only in brief, ask additional follow up questions to elicit a
more detailed response.

4.1 Task 1 Debriefing Questions

4.1.1 Experimental

1) We asked you to debug by working backwards systematically from the failure
to the cause. How would you describe the approaches you used in accomplishing
the task?
2) In what ways did the approaches you used help you make progress towards
your goal, if at all?
3) In what ways did the approaches you used hinder you from making progress
towards your goal, if at all?

4.1.2 Control

1) We asked you to debug the game. Describe the strategy or strategies you
used to make progress on the task.
2) How did this strategy help in making progress on the task? 3) In what ways,
if any, did the strategy get in the way of making progress?

4.2 Task 2 Debriefing Questions

4.2.1 Experimental

1) We asked you to design by first enumerating a set of scenarios, writing a test
for each scenario, and then writing code to make the test pass. How would you

6



describe the approaches you used in accomplishing the task?
2) In what ways did the approaches you used help you make progress towards
your goal?
3) In what ways did the approaches you used hinder you from making progress
towards your goal?

4.2.2 Control

1) Describe the strategy or strategies you used to make progress on the task.
2) How did this strategy help in making progress on the task?
3) In what ways, if any, did the strategy get in the way of making progress?

4.3 After Study Debriefing Questions

4.3.1 Experimental

1) In what ways did you find that the StrategyTracker tool helped support you
in using the strategies?
2) In what ways did you find that the StrategyTracker tool hindered you in
using the strategies?
3) Do you have any questions about the goals and purpose of our study?

4.3.2 Control

Do you have any questions about the goals and purpose of our study?

5 After the study session

Stop the audio recorder, save the audio recording, including the participant
identifier in the filename, and commit the participant code changes to Git.

7


